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Universal critical coupling constants for the three-dimensionaln-vector model from field theory
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The field-theoretical renormalization group~RG! approach in three dimensions is used to estimate the
universal critical values of renormalized coupling constantsg6 andg8 for theO(n)-symmetric model. The RG
series forg6 andg8 are calculated in the four- and three-loop approximations, respectively, and then resummed
by means of the Pade´-Borel-Leroy technique. Under the optimal value of the shift parameterb providing the
fastest convergence of the iteration procedure, numerical estimates forg6* are obtained with an accuracy no
worse than 0.3%. The RG expansion forg8 demonstrates a stronger divergence, and results in considerably
cruder numerical estimates.@S1063-651X~99!01808-5#
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I. INTRODUCTION

The three-dimensional~3D! O(n)-symmetric model plays
a very important role in the theory of phase transitions
describes critical phenomena in a variety of physical syste
including Ising, XY-like, and Heisenberg ferromagnet
simple fluids and binary mixtures, superconductors and B
superfluids, etc. This model is also relevant to cert
asymptotic regimes of the critical behavior of the qua
gluon plasma in quantum chromodynamics (n54) @1,2#. In
the critical region, then-vector model is known to be ther
modynamically equivalent to the 3D Euclidean field theo
of lw4 type, and may be treated by the field-theoreti
renormalization group~RG! technique which proved to b
very efficient both for studying the qualitative features
phase transitions and calculating the critical expone
@3–7#.

On the other hand, for decades the influence of orde
fields upon the critical behavior of various systems attrac
permanent attention, being of prime interest both for th
rists and experimentalists. Recently, the free energy~effec-
tive action! and, in particular, higher-order renormalize
coupling constantsg2k for the basic models of phase trans
tions became the target of intensive theoretical stud
@7–23#. These constants are related to the non-linear sus
tibilities x2k and enter the scaling equation of state, th
playing a key role at criticality. Along with critical expo
nents and critical amplitude ratios, they are universal, i
they possess, underT˜Tc , numerical values that are no
sensitive to the physical nature of the phase transition,
pending only on the system dimensionality and the symm
try of the order parameter.

Calculation of the universal critical values ofg6 , g8, etc.
for the three-dimensional Ising model by a number of a
lytical and numerical methods showed that the fie
theoretical RG approach in fixed dimensions yields the m
accurate numerical estimates for these quantities. It is a
sequence of a rapid convergence of the iteration sche
originating from renormalized perturbation theory. Indee
the resummation of four- and five-loop RG expansions
means of the Borel-transformation-based procedures g
PRE 601063-651X/99/60~2!/1344~6!/$15.00
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values forg6* which differ from each other by less than 0.5
@18,19#, while the use of a resummed three-loop RG exp
sion enabled one to achieve an apparent accuracy no w
than 1.6% @7,17#. Moreover, the field-theoretical RG ap
proach turns out to be powerful enough even in two dim
sions: properly resummed four-loop RG expansions lead
fair numerical estimates for the critical exponents@3# and the
renormalized coupling constantg6* @24# of a 2D Ising model,
and give reasonable results for its random counterpart@25#. It
is natural, therefore, to use the field theory for a calculat
of renormalized higher-order coupling constants for the
n-vector model. In this paper, the 3D RG expansion for
renormalized coupling constantsg6 and g8 will be calcu-
lated, and the numerical estimates for their universal criti
values will be obtained.

II. RG EXPANSIONS FOR THE SEXTIC
AND OCTIC COUPLING CONSTANTS

Within field-theoretical language, the 3DO(n)-symmetric
model in the critical region is described by Euclidean sca
field theory with the Hamiltonian

H5E d3x@ 1
2 „m0

2wa
21~¹wa!2

…1l~wa
2 !2#, ~1!

where a bare mass squaredm0
2 is proportional toT2Tc

(0),
Tc

(0) being the phase transition temperature in the absenc
the order parameter fluctuations. Taking fluctuations into
count results in renormalizations of the massm0˜m, the
field w˜wR , and the coupling constantl˜mg4. Moreover,
thermal fluctuations give rise to many-point correlatio
^w(x1)w(x2)•••w(x2k)& and, correspondingly, to higher
order terms in the expansion of the free energy in powers
the magnetizationM:

F~M ,m!5F~0,m!1 (
k51

`

G2kM
2k. ~2!
1344 © 1999 The American Physical Society
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In the critical region, the coefficientsG2k , being one-particle
irreducible 2k-point vertices taken at zero external momen
demonstrate the well-known scaling behavior

G2k5g2km
32k(11h), ~3!

whereh is a Fisher exponent, andg2k are some constants
Let us set as usual,g25 1

2 . Theng4 , g6 , g8 , . . . will acquire
universal values. The asymptotic critical values ofg4 ,
g4* (n), determine the critical exponents and other univer
quantitites, thus playing a very important role in the theo
The numbersg4* (n) have been found by resummation of th
six-loop expansion for the RGb function @3,4,6,7#, from
strong-coupling series@26#, by lattice calculations@21#, and
from the e expansion@27#, and are known today with an
accuracy which may be considered rather high.

The universal values of higher coupling constantsg6* , g8* ,
etc. determine the structure of the free energyF(M ,m) un-
der strong critical fluctuations. In fact, the Taylor expans
of the scaling function contains the ratiosg2k* /(g4* )k21,
which may be easily shown by replacement of the magn
zation M in Eq. ~2! by the dimensionless variablez
5MAg4 /m11h:

F~z,m!2F~0,m!5
m3

g4
S z2

2
1z41

g6

g4
2

z61
g8

g4
3

z81••• D .

~4!

Moreover, viag2k , the nonlinear susceptibilitiesx2k can be
expressed. Forx4 and x6, corresponding formulas are a
follows:

x45
]3M

]H3 U
H50

5224x2
2m23g4 ,
,

l
.

i-

x65
]5M

]H5 U
H50

5720x2
3m26~8g4

22g6!. ~5!

Their inversion gives the relations

g452
m3x4

24x2
2

, g65
m6~10x4

22x6x2!

720x2
4

, ~6!

which are widely used for extraction of numerical values
renormalized coupling constants from the results of latt
calculations@14,16,21,22,28,29#.

The method of calculating the RG series for theg6 andg8
we use here is straightforward. Since in three dimensi
higher-order bare couplings are irrelevant in the RG sen
the renormalized perturbative series to be found can be
tained from conventional Feynman graph expansions for
six- and eight-point vertices in terms of the only bare co
pling constant –l. In the course of calculations the tens
structures of these vertices,

Gabgdmn5 1
15 ~dabdgddmn114 transpositions!G6 ~7!

Gabgdmnrs5 1
105~dabdgddmndrs1104 transpositions!G8 ,

~8!

should be taken into account. In its turn,l may be expressed
perturbatively as a function of the renormalized coupli
constantg4. Substituting corresponding power series forl
into original expansions, we can obtain the RG series forg6
andg8. The one-, two-, three-, and four-loop contributions
g6 are formed by one, three, 16, and 94 one-particle irred
ible Feynman graphs, respectively. Their calculation give
g65
9

p S lZ2

m D 3Fn126

27
2

9n21340n12324

162p S lZ2

m D1~0.0056289546468n310.28932672886n214.0404241235n

116.204286853!S lZ2

m D 2

2~0.001493126n410.09961447n312.152320n2118.330704n152.830284!S lZ2

m D 3G .
~9!
-
pec-
ve
The perturbative expansion forl emerges directly from the
normalizing conditionl5mZ4Z22g4 and the known series
for Z4 @6#:

Z4511
n18

2p
g41

3n2138n1148

12p2
g4

21~0.0040314418n3

10.0679416657n210.466356233n11.240338484!g4
3 .

~10!

Combining these expressions, we obtain
g65
9

p
g4

3Fn126

27
2

17n1226

81p
g41~0.000999164n2

10.14768927n11.24127452!g4
22~20.00000949n3

10.00783129n210.34565683n12.14825455!g4
3G .

~11!

In the case ofg8, the one-, two-, and three-loop contribu
tions are given by one, five, and 36 Feynman graphs, res
tively. Corresponding ‘‘bare’’ and renormalized perturbati
expansions are found to be
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TABLE I. The values ofg6* for n51, 3, and 10 obtained by means of the Pade´-Borel-Leroy technique for
variousb within three-loop~approximant@1/1#! and four-loop~approximants@1/2# and @2/1#! RG approxi-
mations. The estimates for several values ofb in the middle lines are absent because corresponding P´
approximant turns out to be spoiled by a positive axis pole.

b 0 1 1.24 2 3 4 5 7

n51
@1/1# 1.576 1.604 1.6089 1.621 1.633 1.641 1.648 1.656
@1/2# - - 1.6084 1.600 1.595 1.592 1.590 1.587
@2/1# 1.639 1.613 1.6084 1.596 1.583 1.573 1.566 1.555
n53
@1/1# 0.937 0.949 0.95133 0.957 0.962 0.966 0.969 0.973
@1/2# - - 0.95133 0.948 0.946 0.944 0.944 0.942
@2/1# 0.964 0.953 0.95133 0.946 0.941 0.937 0.934 0.930
n510
@1/1# 0.2338 0.23515 0.2360 0.2366 0.2370 0.2373 0.237
@1/2# - - 0.2348 0.2346 0.2345 0.2344 0.2342
@2/1# 0.2359 0.23515 0.2346 0.2342 0.2339 0.2337 0.233
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g852
81

2p S lZ2

m D 4Fn180

81

2
405n2135626n1342320

13122p S lZ2

m D
1~0.0046907955n310.463650683n2

18.86811653n145.4769028!S lZ2

m D 2G , ~12!

g852
81

2p
g4

4Fn180

81
2

81n217114n1134960

13122p
g4

1~0.00943497n210.60941312n17.15615323!g4
2G .
~13!

In Sec. III, the series of equations~11! and~13! will be used
for estimation of the universal numbersg6* andg8* .

III. RESUMMATION AND NUMERICAL ESTIMATES

Being a field-theoretical perturbative expansions the
ries of equations~11! and ~13! have factorially growing co-
efficients, i.e., they are divergent~asymptotic!. Hence, direct
substitution of the fixed point valueg4* into them would not
lead to satisfactory results. To obtain reasonable nume
estimates forg6* andg8* , some procedure making these e
pansions convergent should be applied. As is well kno
the Borel-Leroy transformations

f ~x!5(
i 50

`

cix
i5E

0

`

tbe2tF~xt!dt, F~y!5(
i 50

`
ci

~ i 1b!!
yi ,

~14!

diminishing the coefficients by the factor (i 1b)!, can play a
role of such a procedure. Since the RG series consid
-

al

,

ed

turns out to be alternating the analytical continuation of
Borel transform may be then performed by using Pade´ ap-
proximants.

Let us discuss first the estimation of the sextic coupl
constantg6* . With the four-loop expansion~11! in hand, we
can construct, in principle, three different Pade´ approxi-
mants:@2/1#, @1/2#, and @0/3#. To obtain proper approxima
tion schemes, however, only diagonal@L/L# and near-
diagonal Pade´ approximants should be employed@30#. That
is why, further, when estimatingg6* , we limit ourselves with
approximants@2/1# and @1/2#. Moreover, the diagonal Pad´
approximant@1/1# will also be dealt with, although this cor
responds, in fact, to the usage of the lower-order, three-l
RG approximation.

The algorithm of estimatingg6* we use here is as follows
Since the Taylor expansion for the free energy contains
coefficients the ratiosR2k5g2k /g4

k21 rather than the renor
malized coupling constants themselves, we work with
RG series forR6. It is resummed in three different way
based on the Borel-Leroy transformation and the Pade´ ap-
proximants just mentioned. The Borel-Leroy integral
evaluated as a function of the parameterb underg45g4* . For
the fixed point coordinateg4* , the values given by the re
summed six-loop RG expansion for theb function are
adopted@3,7#, which are believed to be the most accura
estimates available today. The optimal value ofb providing
the fastest convergence of the iteration scheme is then d
mined. It is deduced from the condition that the Pade´ ap-
proximants employed should give, forb5bopt, the values of
R6* which are as close as possible to each other. Finally,
average over three estimates forR6* is found and claimed to
be a numerical value of this universal ratio.

To obtain an idea about how such a procedure works,
us use Table I, where the results of corresponding calc
tions for n51, 3, and 10 are presented. It is seen that fon
51 and 3,bopt, providing a coincidence of the estimate
given by all three working Pade´ approximants, is equal to
1.24. Forn510, bopt, fixed by the approximants@1/1# and
@2/1#, is equal to 1, whereas the third approximant~@1/2#! at
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TABLE II. Our estimates of universal critical values of the renormalized sextic coupling constant fo
3D n-vector model~column 3!. The fixed point coordinatesg* are taken from Refs.@7# (1<n<3) and@11#
(4<n<40). Theg6* estimates extracted earlier from Pade-Borel resummed three-loop RG expansion~col-
umn 4!, from the exact RG equations~column 5!, obtained by the lattice calculations~column 6!, and
resulting from a constrained analysis of thee-expansions~column 7! are presented for comparison. Colum
8 contains the values ofg6* given by the 1/n-expansion technique.

n g* g6* g6* @7# g6* @11# g6* @14# g6* @23# g6* (1/n)

2 3 4 5 6 7 8
1 1.415 1.608 1.622 1.52 1.92~24! 1.609~9!

2 1.406 1.228 1.236 1.14 1.27~25! 1.21~7!

3 1.392 0.951 0.956 0.88 0.93~20! 0.931~46!

4 1.3745 0.747 0.751 0.68 0.62~15! 0.725~29! 1.6449
5 1.3565 0.596 0.599 1.0528
6 1.3385 0.483 0.485 0.7311
7 1.321 0.396 0.398 0.5371
8 1.3045 0.329 0.331 0.319~4! 0.4112
9 1.289 0.277 0.278 0.3249
10 1.2745 0.235 0.236 0.2632
12 1.2487 0.174 0.175 0.1828
14 1.2266 0.134 0.134 0.1343
16 1.2077 0.105 0.105 0.1032~4! 0.1028
18 1.1914 0.0845 0.0847 0.0812
20 1.1773 0.0693 0.0694 0.0658
24 1.1542 0.0487 0.0488 0.0457
28 1.1361 0.0360 0.0361 0.0336
32 1.1218 0.0276 0.0276 0.0275~1! 0.0257
36 1.1099 0.0218 0.0218 0.0203
40 1.1003 0.0176 0.0176 0.0164
th
th

fo

is

-

b51 is spoiled by a positive axis pole. Nevertheless,
numerical estimate given by this approximant under
nearest ‘‘safe’’~integer! value of b(b52) turns out to be
very close to that predicted by the pole free approximants
bopt. Moreover, as is seen from Table I, with increasingn
numerical estimates forg6* become less dependent onb, i.e.,
their sensitivily to the type of resummation decreases. Th
not surprising. The point is that the RG expansion~11! be-
comes less divergent whenn grows up. To make this prop
o

o
th

It
e
e

r

is

erty obvious, let us replaceg4 in Eq. ~11! by the effective
coupling constant

g5
n18

2p
g4 , ~15!

that is known to be only weakly dependent onn: it varies
from 1.415 to 1 whenn goes from 1 to infinity@6,7#. Then
we obtain
g65
8p2~n126!

3~n18!3
g3F12

2~17n1226!

3~n18!~n126!
g1

1.065025n21157.42454n11323.09596

~n18!2~n126!
g2

2
20.0638n3152.4510n212314.9897n114387.6460

~n18!3~n126!
g3G . ~16!
ing
One can see now that all terms in the RG expansion forg6

~in square brackets!, apart from the first one, decrease mon
tonically whenn˜`. This implies that the largern is the
smaller the contribution of the higher-order terms and, c
respondingly, the better the approximating properties of
series.

This conclusion is definitely confirmed by Table II.
-

r-
is

contains numerical estimates forg6* resulting from the four-
loop RG expansion resummed by the Pade´-Borel-Leroy tech-
nique described above~column 3!, and their analogs given
by the Pade´-Borel resummed three-loop RG series@7# ~col-
umn 4!. As is seen, with increasingn the difference between
the four- and three-loop estimates rapidly diminishes. Be
small ~0.9 %! even for n51, it becomes negligible atn
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TABLE III. Three-loop RG estimates of universal critical values of the renormalized octic coup
constantg8 ~column 2!. Theg8* estimates resulting from a constrained analysis of thee-expansion~column
3!, from the exact RG equations~column 4! and given by the 1/n-expansion technique~column 5! are
presented for comparison.

n g8* g8* @23# g8* @11# g8* (1/n)

2 3 4 5
1 0.825 0.82~9! 0.721
2 0.388 0.83~31! 0.343
3 0.168 0.36~17! 0.145
4 0.057 0.15~13! 0.042 22.151
6 20.021 20.834
8 20.034 20.03~2! 20.0388

16 20.014 20.015~2! 20.0456
32 20.0023 20.0023~1! 20.00395
48 20.00062 20.00061~2! 20.00087
64 20.00023 20.00029

100 20.000046 20.000044~2! 20.000049 20.000052
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510 and practically disappears forn>14.
How close to the exact values ofg6* may the numbers in

column 3 be? To clear up this point, let us compare
four-loop estimate forR6* at n51 with those obtained re
cently by an analysis of the five-loop scaling equation
state for the 3D Ising model@19,31#. Guida and Zinn-Justin
obtainedR6* 51.644 and, taking into account some addition
information, R6* 51.643, while our estimate isR6* 51.648.
Keeping in mind that the exact value ofR6* should lie be-
tween the four- and five-loop estimates~the RG series is
alternating!, our estimate can differ from the exact numb
by no more than 0.3%. Since forn.1 the RG expansion
~11! was argued to provide better numerical estimates tha
the Ising case, this value~0.3%! may be referred to as a
upper bound for the deviation of the numbers in column 3
Table II, from their exact counterparts.

It is interesting to compare our estimates forg6* with
those obtained by other methods. Since 1994, the unive
values of the sextic coupling constant for the 3
O(n)-symmetric model were estimated by solving the ex
RG equations@11#, by lattice calculations@14#, and by a
constrained analysis of thee-expansion@23#; corresponding
results are collected in columns 5, 6, and 7 of Table II,
spectively. As is seen, they are, in general, in accord w
ours.

A less optimistic situation takes place in the case of
octic coupling constantg8. The RG expansion@Eq. ~13!# is
shorter than Eq.~11!, and strongly diverges. Moreover, th
second term in this series, along with the first one, rema
finite undern˜`. It becomes obvious if one replacesg4 by
g:

g852
8p3~n180!

~n18!4
g4F12

81n217114n1134960

81~n180!~n18!
g

1
30.1707n211948.7519n122883.6021

~n180!~n18!2
g2G . ~17!

In addition, the RG series forg8 has an unusual feature
whenn˜` , the first and second terms tend to compens
r

f

l

r

in

f

al

t

-
h

e

s

te

for each other, making their mutual contribution small a
increasing the role of the higher-order terms. That is w
numerical estimates resulting from expansion~17! are ex-
pected to be substantially cruder than those given by se
~16! both for small and large values ofn.

In order to estimateg8* (n), we resum the RG expansio
for g8 by the Pade´-Borel-Leroy technique using the diagon
Padéapproximant@1/1#. Other Pade´ approximants,@0/2# and
@0/1#, are ignored, since they turn out to lead to quite uns
isfactory numerical results. Dealing with a single Pade´ ap-
proximant, in some condition we need to fix the optim
value of the shift parameterb. For the three-dimensiona
Ising model the estimateg8* 50.825 was recently found@19#.
This number has been extracted from the five-loop RG
pansion, and may be considered the most accurate know
to the present. It is natural therefore to tune, by proper cho
of b, a numerical value ofg8* (1) given by the resummed
three-loop RG series with the best estimate available. Su
procedure leads tobopt540, and this number is adopted a
optimal in the course of evaluation ofg8* for arbitraryn.

The results of our calculations are collected in Table
where the estimates forg8* (n), obtained by a constraine
analysis of thee expansion@23# by an approximate solution
of the exact RG equations@11# and given by the
1/n-expansion technique, are also presented for compari
As seen, forn>8 the numbers originating from two field
theoretical approaches—g expansion in three dimension
ande expansion—agree quite well. However, for smallern,
especially forn52, differences between them turn out to b
rather large. This is not surprising since overly short pert
bative expansions forg8 are available both in three and
2e, dimensions and they demonstrate a strong diverge
preventing accurate numerical estimates from being
tained. At the same time, our three-loop RG estimates
believed to be closer to the true critical values ofg8 than
those given by thee expansion, because in three dimensio
we have longer perturbative series. A fair agreement betw
our results and the numbers emerging from the exact
equations~see Table III! may be considered as an argume
in favor of this belief.
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IV. CONCLUSION

To summarize, we have calculated the RG expansions
renormalized coupling constantsg6 and g8 of the 3D
n-vector model in four- and three-loop orders, respective
Resummation of the RG series by the Pade´-Borel-Leroy
method has enabled us to obtain numerical estimates fo
universal critical values of these quantities for arbitraryn.
Having analyzed the sensitivity of the RG estimates forg6* to
the type of resummation procedure and a character of t
dependence on the order of the RG approximation, the
parent accuracy of these numbers has been argued to b
worse than 0.3%. Numerical estimates forg8* turned out to
a

tt
or

.

he

ir
p-
no

be less accurate because of the smaller length and stro
divergence of the RG expansion obtained. They were fo
to be consistent, in general, with the values ofg8* deduced
from the exact RG equations and, forn>8 , with those given
by a constrained analysis of correspondinge expansion.
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